Some sofic shifts cannot commute with nonwandering shifts of finite type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Sofic Shifts Cannot Commute with Nonwandering Shifts of Finite Type

Suppose S is a nonwandering shift of finite type (SFT), and T is an expansive automorphism of S. We show T cannot be a strictly sofic almost Markov shift. Also included is an example of D. Fiebig, a reducible SFT with an expansive automorphism which is not SFT.

متن کامل

Sofic and Almost of Finite Type Tree-Shifts

We introduce the notion of sofic tree-shifts which corresponds to symbolic dynamical systems of infinite trees accepted by finite tree automata. We show that, contrary to shifts of infinite sequences, there is no unique minimal deterministic irreducible tree automaton accepting an irreducible sofic tree-shift, but that there is a unique synchronized one, called the Shannon cover of the tree-shi...

متن کامل

Sofic-Dyck Shifts

We define the class of sofic-Dyck shifts which extends the class of Markov-Dyck shifts introduced by Inoue, Krieger and Mat-sumoto. Sofic-Dyck shifts are shifts of sequences whose finite factors form unambiguous context-free languages. We show that they correspond exactly to the class of shifts of sequences whose sets of factors are visibly pushdown languages. We give an expression of the zeta ...

متن کامل

Computational Complementarity and Sofic Shifts

Finite automata (with outputs but no initial states) have been extensively used as models of computational complementarity, a property which mimics the physical complementarity. All this work was focussed on \frames", i.e., on xed, static, local descriptions of the system behaviour. In this paper we are mainly interested in the asymptotical description of complementarity. To this aim we will st...

متن کامل

Tree-shifts of finite type

A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case. In this paper, we study the shifts of finite type de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2004

ISSN: 0019-2082

DOI: 10.1215/ijm/1258138511